Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Technol (Berl) ; 12(2): 285-304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136708

RESUMO

In recent years, deep learning in healthcare applications has attracted considerable attention from research community. They are deployed on powerful cloud infrastructures to process big health data. However, privacy issue arises when sensitive data are offloaded to the remote cloud. In this paper, we focus on pervasive health monitoring applications that allow anywhere and anytime monitoring of patients, such as heart diseases diagnosis, sleep apnea detection, and more recently, early detection of Covid-19. As pervasive health monitoring applications generally operate on constrained client-side environment, it is important to take into consideration these constraints when designing privacy-preserving solutions. This paper aims therefore to review the adequacy of existing privacy-preserving solutions for deep learning in pervasive health monitoring environment. To this end, we identify the privacy-preserving learning scenarios and their corresponding tasks and requirements. Furthermore, we define the evaluation criteria of the reviewed solutions, we discuss them, and highlight open issues for future research.

2.
Sensors (Basel) ; 21(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375153

RESUMO

A multitude of smart things and wirelessly connected Sensor Nodes (SNs) have pervasively facilitated the use of smart applications in every domain of life. Along with the bounties of smart things and applications, there are hazards of external and internal attacks. Unfortunately, mitigating internal attacks is quite challenging, where network lifespan (w.r.t. energy consumption at node level), latency, and scalability are the three main factors that influence the efficacy of security measures. Furthermore, most of the security measures provide centralized solutions, ignoring the decentralized nature of SN-powered Internet of Things (IoT) deployments. This paper presents an energy-efficient decentralized trust mechanism using a blockchain-based multi-mobile code-driven solution for detecting internal attacks in sensor node-powered IoT. The results validate the better performance of the proposed solution over existing solutions with 43.94% and 2.67% less message overhead in blackhole and greyhole attack scenarios, respectively. Similarly, the malicious node detection time is reduced by 20.35% and 11.35% in both blackhole and greyhole attacks. Both of these factors play a vital role in improving network lifetime.

3.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121033

RESUMO

In this paper, we investigate the problem of selective routing attack in wireless sensor networks by considering a novel threat, named the upstream-node effect, which limits the accuracy of the monitoring functions in deciding whether a monitored node is legitimate or malicious. To address this limitation, we propose a one-dimensional one-class classifier, named relaxed flow conservation constraint, as an intrusion detection scheme to counter the upstream node attack. Each node uses four types of relaxed flow conservation constraints to monitor all of its neighbors. Three constraints are applied by using one-hop knowledge, and the fourth one is calculated by monitoring two-hop information. The latter is obtained by proposing two-hop energy-efficient and secure reporting scheme. We theoretically analyze the security and performance of the proposed intrusion detection method. We also show the superiority of relaxed flow conservation constraint in defending against upstream node attack compared to other schemes. The simulation results show that the proposed intrusion detection system achieves good results in terms of detection effectiveness.

4.
Sensors (Basel) ; 19(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311136

RESUMO

The industrial control systems are facing an increasing number of sophisticated cyber attacks that can have very dangerous consequences on humans and their environments. In order to deal with these issues, novel technologies and approaches should be adopted. In this paper, we focus on the security of commands in industrial IoT against forged commands and misrouting of commands. To this end, we propose a security architecture that integrates the Blockchain and the Software-defined network (SDN) technologies. The proposed security architecture is composed of: (a) an intrusion detection system, namely RSL-KNN, which combines the Random Subspace Learning (RSL) and K-Nearest Neighbor (KNN) to defend against the forged commands, which target the industrial control process, and (b) a Blockchain-based Integrity Checking System (BICS), which can prevent the misrouting attack, which tampers with the OpenFlow rules of the SDN-enabled industrial IoT systems. We test the proposed security solution on an Industrial Control System Cyber attack Dataset and on an experimental platform combining software-defined networking and blockchain technologies. The evaluation results demonstrate the effectiveness and efficiency of the proposed security solution.

5.
J Med Syst ; 41(1): 14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900653

RESUMO

E-Healthcare is an emerging field that provides mobility to its users. The protected health information of the users are stored at a remote server (Telecare Medical Information System) and can be accessed by the users at anytime. Many authentication protocols have been proposed to ensure the secure authenticated access to the Telecare Medical Information System. These protocols are designed to provide certain properties such as: anonymity, untraceability, unlinkability, privacy, confidentiality, availability and integrity. They also aim to build a key exchange mechanism, which provides security against some attacks such as: identity theft, password guessing, denial of service, impersonation and insider attacks. This paper reviews these proposed authentication protocols and discusses their strengths and weaknesses in terms of ensured security and privacy properties, and computation cost. The schemes are divided in three broad categories of one-factor, two-factor and three-factor authentication schemes. Inter-category and intra-category comparison has been performed for these schemes and based on the derived results we propose future directions and recommendations that can be very helpful to the researchers who work on the design and implementation of authentication protocols.


Assuntos
Segurança Computacional/normas , Confidencialidade , Troca de Informação em Saúde/normas , Telemedicina/métodos , Telemedicina/normas , Algoritmos , Humanos
6.
Sensors (Basel) ; 16(4): 460, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27043572

RESUMO

The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...